
2 Computer

The viability of open source projects such
as Linux and GNU is frequently ques-
tioned. This month, David Wall shows
how the use of such software can help a
small, underfunded company establish
itself in the commercial software arena.
It’s apparent that from Wall’s perspective
the viability question has been answered
with a resounding yes.

Michael Lutz, Area Editor

L ike so many tech startups, my

partners and I founded Yozons

with what we believed would

be a hugely successful idea: a

unique process for incorporating

public-key cryptography that any busi-

nessperson could easily use. We believed

it would revolutionize the document-dri-

ven economy, becoming the killer app

for electronic signatures and ushering in

the paperless office.

Trouble was, we didn’t have sufficient

capital to build the business. Undeterred,

we immediately documented our process

and filed a provisional patent, which gave

us only one critical year to raise money,

develop the technology, raise more money,

then submit the final patent application.

WEATHERING AN
INVESTMENT DRY SPELL

When the stock market bubble burst

and raising capital became a brutal chal-

lenge, we realized we’d have to bootstrap

our company. Our calculations showed

we needed at least $200,000 to build our

software on a shoestring budget—which

meant using open source software to

avoid license fees. We agreed we would

keep our source code completely sepa-

rate from the open source code and use

highly portable coding techniques so that

we could deploy on “real” gear later.

To fund our venture, we relied on

friends, family, and a few angel investors

who chipped in until we exceeded our

goal, letting us start six months after our

idea hatched. To build a viable Web ser-

vices business, we needed to use tools

that would let us scale from a single

server to the thousands we’d need to han-

dle our projected loads.

If you’ve recently priced Solaris or NT,

an Oracle database, BEA Weblogic,

iPlanet, or RSA Security’s crypto toolkits,

you know that buying them requires

deep pockets. Worse, the expensive base

software severely limited our ability to

sell a reasonably priced Web service and

forced us to dramatically increase our

customers’ licensing costs. It’s harder to

make money when a moderately priced

system costs $200,000.

We turned to open source to save us.

I’d acquired some background in it by

dabbling in the Linux, GNU, and Apache

projects since about 1995. But everything

beyond that involved a cycle of research,

download, build, test, and compare.

POWERED BY JAVA
My significant experience with Java

technologies prompted me to build our

system with the highly portable Java lan-

guage, which can build new systems

rapidly. Fortunately, Java can be down-

loaded freely for Windows, Linux, and

Solaris. Next, I decided to use Sun’s JDK

1.3 and VA Linux’s Intel-based servers

running their version of RedHat Linux.

Unfortunately, choosing VA Linux stuck

me with unsupported hardware because

the company recently announced they’ve

abandoned their roots to become a soft-

ware-only company.

For the Web server, I chose Apache

because it is stable, robust, secure, and well

known. Better still, our service requires

high levels of security, with SSL a must,

and OpenSSL has a fine implementation

that plugs into Apache using ModSSL. The

build was straightforward, incurring no

costs beyond the hardware and the pro-

duction servers’ digital certificates.

Web services require dynamic Web

pages, however, so I chose an application

server next. Fortunately, the Apache pro-

ject came to the rescue on several Java

fronts. First, it offers Jakarta, which

includes Tomcat for our Java ServerPages

and servlet environment. It also offers an

XML parser and a SOAP implementa-

tion that we needed for our remote APIs.

With these in place, we could serve up

secure, dynamic Web pages.

A DATABASE SQL
Next, I focused on the database. I’d

read much about MySQL, an apparently

superfast database. They’d just added

transaction support, but I fretted that this

Using Open Source
for a Profitable
Startup
David A.E. Wall, Yozons, Inc.

S O F T W A R E T E C H N O L O G I E S

When money’s scarce, open
source software can help your
new business launch without
breaking your budget.

new combination might not be ready for

prime time.

PostgreSQL came to the rescue. It’s a

good database with a workable, though

not entirely compliant, JDBC interface.

Its even performance across queries and

updates, transaction and large-binary-

object support, good locking rules, and

online backups proved critical.

We did experience a couple of minor

snafus with PostgreSQL. First, JDBC

does not support binary objects well,

making it important to run a contributed

utility that cleans up orphaned objects.

Second, having to run vacuum periodi-

cally is a pain. This utility, bundled with

PostgreSQL, cleans up holes created by

deletes and updates, and generates query

optimizer statistics. The company plans

to have vacuum run automatically in the

future, making the database self-clean-

ing. Third, the JDBC library doesn’t sup-

port small binary objects, a limitation we

got around by base-64 encoding them for

storage in a text field. Finally, time

stamps in many programming environ-

ments resolve in milliseconds, but we

couldn’t get JDBC to accurately store

anything higher than centiseconds.

Normally, that’s unlikely to be a prob-

lem, but if you use time stamps as part of

a digital signature or secure hash, missing

bits pose a real problem.

For our application to run on multi-

ple, distributed servers, we needed to reli-

ably transfer messages among them all.

We wanted to use a transactional mes-

saging platform with guaranteed deliv-

ery, preferably one that implemented the

Java Messaging Service APIs.

The solution, while not open source,

was at least free. SwiftMQ’s federated

router architecture provided a highly

scalable message routing platform that

has proven fast and reliable. With the

ability to connect remote routers over

SSL, secure messaging becomes possible

even across the Internet. The company

releases bug fixes and new features peri-

odically and also has a user community

that can help with configuration issues.

At this point, we had everything nec-

essary for a scalable, distributed Web ser-

vices platform—at no cost to the startup

and with no added licensing costs for our

customers.

ENCRYPTION ESSENTIALS
We needed superior encryption to offer

e-signatures and guarantee the privacy of

the business documents being routed

through the Yozons network. A Java

Cryptography Extension implementation

from Bouncy Castle provided this capa-

bility. It offers not only a wide range of

December 2001 3

Startup Lessons Learned
Despite the fear, uncertainty and doubt cast by Microsoft, open source licenses

are not inherently evil. If your software is proprietary, however, it’s important

that you understand the open source licenses being used. If you don’t, follow

“safe open source” practices:

• don’t incorporate any open source code directly into your code;

• don’t modify the source code to fit your proprietary needs; and

• if at all possible, don’t even download and compile the source code.

The third practice should prevent you from being tempted to do either of the

first two.

Know the licenses
Many open source projects provide binaries and follow a lenient BSD license,

but many more use the stricter GPL, so it’s important to ensure that you always

keep your proprietary code separate and distinct from the open source code.

Depending on your revenue model, releasing your code as open source may work

fine for you.

If you can’t convince others to invest, you probably won’t be able to raise

money or even sell whatever you do build to customers later on. Prototype devel-

opment is a must, but don’t try to build the real thing until you have the money

to get it built, deployed, and marketed.

Balance marketing and engineering
Techies often don’t understand marketing and sales, but these activities are

incredibly hard to do right. They generally differ 180 degrees from engineering

activities, and they easily mean more to a business’s success than the development

effort itself.

It’s also true, however, that the product is key. I saw a well-funded startup fail

despite a fantastic marketing and sales staff. Although marketing sold many

investors on the idea, the company’s technologists were weak. Focused more on

the tools they’d like to use than on building the founder’s vision, the technolo-

gists never finished the project, leaving their great sales team with nothing more

to show than slideware.

Make size matter
If you expect to license your software to large corporations, you must allow

it to run on their hardware and software stacks, even if doing so is costly to your

organization. Although open source solutions may be more than adequate and

often run better than their commercial counterparts, don’t expect your clients

to risk their positions by bucking the status quo.

All open source projects are not the same. Some are too small, some die from

lack of continued support, and some suffer from quality problems. Chose the pro-

jects that match your needs and that have an active user community. Rest assured

that if the open source project does die, you will still have the source code. If

you stick with standard APIs, switching to another project or even to a com-

mercial vendor will be much less painful.

4 Computer

ensure that our application did not fall

victim to an attack on them. The recent

Code Red outbreak hurt many sites run-

ning Microsoft software, but we escaped

harm, showing once again that open

source software can save time and money

over commercial competitors.

Providing accurate time stamps on

messages, documents, and e-signatures is

a critical Yozons feature. The network

time protocol fit the bill, and timeSync

offered an easily configured, automated

NTP solution that ensures our clocks

remain highly accurate and synchronized.

To secure the Web servers from intru-

sion, we examined a few firewall appli-

ances, but found their costs prohibitive.

Fortunately, Linux’s ipchains offers a fire-

wall for inbound and outbound traffic. It

also provides network address translation

to let us run our application on a private

network behind yet another firewall.

Tripwire and Snort detect unexpected

modifications to files and analyze logs for

intrusions, turning off all unneeded

Internet services, removing all unneeded

user accounts, and ensuring high-quality

passwords for the accounts that remain.

Coupled with these services, Linux has

shown to be very secure and robust.

T he open source community gave our

startup up-front cost savings, highly

reliable and feature-rich software,

and excellent support networks that let us

offer a reasonably priced secure document

delivery and e-signature application to our

business clients. Although we’re pleased

that we can easily run our software on

Solaris, iPlanet, Oracle, and BEA for those

clients who demand it, we’re delighted

with the results we’ve received because of

the hard work and dedication of many

untold open source contributors. ✸

David A.E. Wall is a founder and the
chief software architect for Yozons Inc.,
a Seattle-based startup focused on pro-
viding e-signature and secure document
delivery Web services. Contact him at
dwall@yozons.com.

standard cryptography—including Blow-

fish, Rijndael, and TripleDES—but also

public-key cryptography through its RSA

asymmetric ciphers and digital-signature

capabilities. It’s also the only open source

JCE implementation we found that sup-

ports X.509 digital certificates.

Finally, we had everything needed to

build a secure messaging service with e-

signatures on a distributed architecture.

But how were we going to get multiple

developers at multiple locations to write

code without causing lots of pain and lost

updates?

DISTRIBUTED DEVELOPMENT
We chose the open source packages

CVS, WinCVS, and OpenSSH, which

leveraged the open source community’s

vast experience with distributed devel-

opment. CVS provides a reliable, dis-

tributed file repository for source code

and binaries, WinCVS provides an easy-

to-use interface for Windows developers,

and OpenSSH provides secure terminal

and file transfer access for both interac-

tive work and for securing communica-

tions to the CVS repository.

Completing a working Web service

requires software that’s not tied to soft-

ware development. The open source

community again played a significant

role in these acquisitions. Yozons uses e-

mail heavily, providing alerts and send-

ing return receipts when users read or

sign documents. JavaMail provides the

programmatic interface, but Sendmail

provides the SMTP server that delivers

our e-mail. For our domain name server,

we stuck with the venerable Bind.

Both Sendmail and Bind have worked

flawlessly although both also have a his-

tory of security issues. Thus, we decided

to run them on their own server to help

S o f t w a r e T e c h n o l o g i e s

The open source
community gave our
startup up-front cost

savings, highly reliable
and feature-rich software,

and excellent support
networks.

